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Abstract.

The effects of small-scale heterogeneity in land surface

characteristics on the large-scale fluxes of water and energy in the

land-atmosphere system has become a central focus of many of the climatology

research experiments. The acquisition of high resolution land surface data

through remote sensing and intensive land-climatology field experiments (like

HAPEX and FIFE) has provided data to investigate the interactions between

microscale land-atmosphere interactions and macroscale models. One essential

research question is how to account for the small scale heterogeneities and

whether 'effective' parameters can be used in the macroscale models. To

address this question of scaling, three modeling experiments were performed

and are reviewed in the paper. The first is concerned with the aggregation

of parameters and inputs for a terrestrial water and energy balance model.

The second experiment analyzed the scaling behaviour of hydrologic responses

during rain events and between rain events. The third experiment compared

the hydrologic responses from distributed models with a lumped model that

uses spatially constant inputs and parameters. The results show that the

patterns of small scale variations can be represented statistically if the

scale is larger that a representative elementary area scale, which appears to

be about 2 - 3 times the correlation length of the process. For natural

catchments this appears to be about 1 - 2 sq km. The results concerning

distributed versus lumped representations are more complicated. For

conditions when the processes are non-linear, then lumping results in biases;

otherwise a one-dimensional model based on 'equivalent' parameters provides

quite good results. Further research is needed to fully understand these

conditions.



Introduction.

The complex heterogeneity of the land surface through soils,

vegetation and topography, all of which have different length scales, and

their interaction with meteorological inputs that vary with space and time,

result in energy and water fluxes whose scaling properties are unknown.

Research into land-atmospheric interactions suggest a strong coupling between

land surface hydrologic processes and climate (Chnrney et al., 1977; Walker

and Rowntree. 1977; Shukla and Mintz, 1982; and Sud et al.,1990. ) Due to

this coupling, the issue of 'scale interaction' for land surface-atmospheric

processes has emerged as one of the critical unresolved problems for the

parameterization of climate models.

Understanding the interaction between scales has increased in

importance when the apparent effects of surface heterogeneities on the

transfer and water and energy fluxes are observed through remote sensing and

intensive field campaigns like HAPEX and FIFE (Sellers et al., 1988). The

ability to parameterize macro-scale models based on field experiments or

remotely sensed data has emerged as an important research question for

programs such as the Global Energy and Water Experiment (GEWF_X) or the Earth

Observing System (Eos). It is also important for the parameterization of the

macroscale land-surface hydrology necessary in climate models, and crucial in

our understanding in how to represent sub-grid variability in such mcroscale

models.

From a modeling perspective, it's important to establish the

relationship between spatial variability in theinputs and model parameters.

the scale being modeled and the proper representation of the hydrologic



processes at that scale. Figure 1 presents a schematic for modeling over a

range of scales. Let us consider this figure in light of the terrestrial

water balance, which for a control volume my be written as:

<_) = <P> - <E> - <Q>
(1)

where S represents the moisture in the soil column. E evaporation from the

land surface into the atmosphere, P the precipitation from the atmosphere to

the land surface, and Q the net runoff from the control volume. The spatial

average for the control volume is noted by <->.

Equation (I) is valid over all scales and only through the

parameterization of individual terms does the water balance equation become a

'distributed' or 'lumped' model. By 'distributed' model, we mean a model

which accounts for spatial variability in inputs, processes or parameters.

This accounting can be either deterministic, in which the actual pattern of

variability is represented -- examples include the European Hydrological

System model (SHE) (Abbott et. al., 1986a,b) and the 3-D finite element

models of Binley et al. (1989) or Paniconi and Wood (1992); or statistical,

in which the patterns of variability are represented statistically --

examples being models like TOPMODEL (Beven and Kirkby, 1979) and its variants

(see Wood et al, 1990; Famiglietti et. al., 1992a; Moore et al, 1988; and

Wood et al. 1992) in which topography and soil plays an important role in the

distribution of water within the catchment.

By a "lumped' model we mean a model that represents the catchment

(or control volume) as being spatially homogeneous with regard to inputs and

parameters. There are a wide number of hydrolgic water balance models of

varying complexity that don't consider spatial variability. These range from



the well-known unit hydrograph and its variants, the water balance models of

Eagleson (1978), to complex atmospheric-biospheric models being proposed for

GQ4s (examples being, the Biosphere Atmosphere Transfer Scheme (BATS) of

Dickinson (1984) and the Simple Biosphere Model (SiB) of Sellers et al.

(1986).

The terrestrial water balance, including infiltration, evaporation

and runoff, has been revealed to be a highly nonlinear and spatially variable

process. Yet, little progress has been made in relating the observed

small-scale complexity that is apparent from recent field and remote sensing

experiments to models and predictions at large scales. It is this

relationship that is the subject of this paper. The research being presented

represents recent work in investigating the effects of spatial variability

and scale on the quantification and parameterization of the terrestrial water

balance. The results draw primarily from the papers of Wood et al., (1988);

Wood et al., (1990); Wood and Lakshmi (1992); and Famiglietti and Wood

(1992c). Important related papers are those of Wood et al., (1986);

Sivapalan et al., (1987); Beven et al., (19_): Beven (1988).

Chan_inK Scale and Water Balance Fluxes.

Large scale field experiments such as FIFE and }{APEX, and remote

sensing experiments like MAC-HYDRO {see Wood et al., 1992) and MAC-EUROPE

(see Lin et al., 1993), have shown the significant variability across a

catchment with regards to runoff production, soil moisture levels and actual

evaporation rates. The heterogeneity in hillslope forms, soil properties and

vegetation combine with variability in rainfall to produce different runoff

processes and responses across hillslopes, different soil moisture conditions

and interstorm (dry period} moisture redistribution and evapotranspiration.



For a hillslope, it may be possible to develop a distributed model

which explicitly considers variability in soil and vegetation properties. In

fact, the simulations of Smith and Hebbert (1979) show that the actual

patterns of soil properties may be important in simulating the runoff

response from a hillslope.

At the scale of a small catchment, it may be possible to consider

the variability in topography, soil and vegetation as if they came from a

stationary statistical distribution (Beven, 1988, Wood et al., 1990.) Thus

the distributed model would consider patterns of variability statistically.

Within a physioclimatic region, we can consider that there may be a

population of small catchments that is statistically similar but whose actual

patterns of topography, soil and vegetation properties and therefore

responses vary quite differently (Beven. 1988).

As scale increases, so does the sample of the small catchments and

therefore the sample of the properties that control the water balance fluxes.

This increased sampling of small catchments leads to a decrease in the

difference between small catchment responses, eventhough the patterns of the

properties are quite different across these small catchments (Beven, 1988;

Wood et al.. 1990). At some scale, the variance between the hydrologic

responses for catchments (or areas) should reach a minimum. Wood et al.

(1988) suggested that this theshold scale be referred to as the 'Elementary

Representative Area' (REA) which they define as:

the critical scale at which implicit continuum assumptions can be

used without explicit knowledge of the actual patterns of

topographic, soil, or rainfall fields. It is sufficient to

represent these fields by their statistical characterization.

Predicting the water balance at the REA scale may very well require



considering heterogeneity at smaller scales, through its statistical

characterization; it should not imply the use of equivalent and average

parameters. In terms of Figure 1, changing scale helps us understand the

aggregation of the output from the distributed response. The concept of the

REA scale helps us in clarifying the relationship between a distributed model

and the lumped model, and how this relationship may vary with scale.

In this paper we report on a series of numerical experiments that

investigate aggregation and scaling of land-surface hydrological processes.

Famiglietti (1992) and Famiglietti et al. (1992a,b) have developed a water

and enerKy balance model within a TOPMODEL-like structure that predicts water

and energy balance fluxes for areas of hetrogeneous soil, hillslopes,

rainfall and net radiation characteristics. The models are summarized in

Appendix A, and were developed to predict water and energy fluxes for the

Intensive Field Campaigns {IFCs) of FIFE (Famiglietti and Wood, 1992a,b) and

subsequent remote sensing experiments {Wood et al., 1992; Linet al., 1992).

The models have also been used to analyze the water balance fluxes for

catchments of different scales, in which the small catchments were sampled

from a particular topography -- in this case the topography of the FIFE area

(Famiglietti and Wood, 1992b).

The experiments that will be reported here are as follows. The

first is the aggregation of distributed inputs for the water balance m_el;

specifically the representation of soil and topography, and vegetation. The

second is the aggregation of the hydrologic responses in a catchment due to

rainfall during a storm event and due to evaporative demands during

interstorm periods. 3_nese two sets of experiments allows us to infer the

nature of aggregation in parameters and processes. The third experiment will



compare the aggregated fluxes from the distributed model to the predicted

fluxes from a lumped version of the model.

Chnn_ir_ Scale and Model Inputs.

Scalin_ of Topo_ravhY. Appendix A provides a summary of the water

and energy belance models. The models were applied to the Kings Creek

catchment in the FIFE area in Kansas. The FIFE area is 15 km x 15 km, with a

rolling topography with an approximate elevation range is 325 m to 460 m.

Except for heavier vegetation at the bottom of stream valleys, the vegetation

consists on short crops, pasture and natural grasses. The Kings Creek

catchment, which is 11.7 sq km in area, is in the north-west portion of the

FIFE area in the Konza Prairie preserve. Figure 3 shows the division of the

catchment into subcatchments -- the number ranging from 5 to 66 depending on

the scale. All subcatchments represent hydrologically consistent units in

that runoff flows out of the subcatchments through one flow point, and that

the surface runoff flux across the other boundaries is zero.

Equation A.2 provides the relationship between variability in

topography and soil, and variability in local water table depths and soil

moisture. Wood et al. (1990) have shown that the variability in topography

dominates variability in soil properties for Kings Creek. The TOPMODEL

theory uses the topographic-soil index to predict local water fluxes and soil

moisture. Further, as discussed earlier, larger catchments can be considered

to be composed of a population of smaller catchments that are statistically

similar but whose actual patterns vary quite considerably. The question

remains: at what catchment scale is the sample of hillslopes and small

catchments sufficiently large so that their actual patterns of the

soil-topographic index can be represented statistically. The average value



of the topographic index, _,, was calculated for each of the subcatchments

shown in Figure 3 and plotted against subcatchment area. Each pixel is 900

sq m. The behavior of the catchment shows that at small scales there is

extensive variability in hillslope forms leading to variability in X, but at

a scale of approximately 1 sq km the increased sampling of hillslopes and

small catchments leads to a decrease in the difference between topographies.

Wolock (personal communication} has found similar behavior over a

wider range of scales for Sleepers River, VT. Figure 4 gives his results for

X over catchments scales up to approximately 45 sq km. Again, there appears

to be a significant decrease in _ at about 1 to 2 sq km.

ScalinH of VeKetation. In the first experiment, scaling of the

topographic index was explored due to its role in subsurface water fluxes and

the redistribution of soil moisture. Vegetation type and density determine

the stomatal and canopy resistances, and therefore transpiration rates in the

water and energy balance models (see equations A.3 - A.5.) What can be said

about the scaling behavior of satellite derived estimates for vegetation?

Wood and Lakshmi (1992) used high resolution thermatic mapper (TM)

satellite data to derive the normalized difference vegetation index (NDVI).

latent heat and sensible heat fluxes for the August 15. 1987 overpass and to

investigate their scaling properties. The scaling for the vegetation will be

reviewed here. The resolution of Tg is 30 m for bands 1 through 5, and 120 m

for the thermal band. The scaling question investigated here is whether

averaging the TN bands prior to calculating NDVI provides the same derived

quantities as would be found by calculating the quantities at the TN

resolution and averaging. The equivalence of the two approaches depends on



the degree of non-linearity represented by in functions that relate NDVI to

TM data.

The following procedure was followed. The normalized difference

vegetation index (NDVI) was calculated at the 30 m TM resolution using:

(B4 - B3) (2)

NDVI = _B 4 + B3 )

where B3 represents band 3 (0.63 - 0.69 _m) and B 4 represents band 4

(0.76 - 0.90 /_m). The first often being referred to as the red and the

latter the near infrared band. The NDVI image corresponding to a TM scene

acquired over the FIFE area for August 15. 19S7, is given in Figure 5. The

TM scene was fully calibrated before the calculations were carried out.

For the aggregated scales, two procedures were followed. One was

to spatially aggregate the 114 bands and then use equation (2) while the

second procedure is to spatially aggregate the NDVI based on the 30 m TM

data. This procedure was used for aggregation levels of 300 x 300 m.

750 x 750 m and 1500 x 1500 m. A resolution equivalent to AVHRR would lie

between the last two cases. Figure 6 shows the aggregated NDVI. using the

second procedure, for the aggregation level of 300 x 300 m. Comparisons

between the two aggregation procedures can be best shown by a scatter plot

between the aggregated 30 m-based NDVI and the NDVI derived using aggregated

TM bands; these comparisons are presented in Figure 7.

One striking observation arises from comparing Figures 5 - 7.

Notice that the detailed structure observable in Figure 5 is lost in Figure

6. and yet the averaged NDVI from the two aggregation schemes are essentially

the same as can be seen in scatter plot of Figure 7. Figure 7 does show that

a small bias exists between the two aggregation procedures but its magnitude



is rather insignificant. These results indicate that NDVI calculated from

spatially averaged TM (or lower resolution AVHRR data) will be equivalent to

the NDVI scaled up from the full resolution image.

Chan_in_ Scale and Derived HydroloKic Responses.

In a manner similar to the investigation of the scaling properties

in topography, the scaling in infiltration and evapotranspiratlon were also

investigated. For this study the water balance model described in

Famiglietti et al. (1992n) (see Appendix A) was applied to the Kings Creek

catchment of the FIFE area in Kansas. For a rainfall storm on August 4,

1987, the average runoff for the subcatchments shown in Figure 2 was

calculated for two times and plotted in Figure 8 against subcatchment area

measured in pixels. Notice that the runoff, Qt is normalized by the average

precipitation, P. The same type of plot was done for selected times during

an interstorm period that extended from July 18 through July 31, 1987 and is

presented as Figure 9. The behavior of the catchment shows that at small

scales there is extensive variability in both storm response and evaporation.

This variability appears to be controlled by variability in soils and

topography whose length scales are on the order of 102-103 m -- the typical

scale of a hillslope. With increased scale, the increased sampling of

hillslopes leads to a decrease in the difference between subcatcl_nent

responses.

These results are not too surprising given the linkage within the

model between topography and the water balance fluxes -- namely that

variations in topography play a significant role in the spatial variation of

soil moisture within a catchment, setting up spatially variable initial



conditions for both runoff from rainstorms and evaporation during interstorm

periods.

The results also suggest that at larger scales it would be possible

to model the responses using a simplified macroscale model (given in Appendix

A as equations A.6 and A.7) based on the statistical representation of the

heterogeneities in topography, soils and hydrologic forcings (rainfall and

potential evaporation). Predictions based on these equations are also shown

in Figures 8 and 9 as the "macroscale model' Since the macroscale model is

scale invariant, it appears as a straight line in Figures B and 9.

Scalin_ remotely sensed soil moisture. To date only a very limited

number of catchments have been analyzed in the manner described here.

Furthermore, they have all had moderate relief and located in regions with

humid climates. For these, the REA-scale appears to be quite consistent at

about 1-2 sq km for both the runoff and evaporation processes. Clearly

additional catchments representing a broader range of climates and catchment

sizes need to be analyzed before definitive statements concerning the

REA-scale can be made.

To investigate whether these scaling results are model determined

or reflective of actual hydrologic processes, a similar analysis was done

using airborne radar from the NAC-HYDRO field experiment of 1990 in

Nahantango Creek, PA, a USDA experimental catchment. This experiment focused

on estimating soil moisture through passive microwave (L-band) radiation

.using the PBHR sensor with an effective spatial.resolution of approximately

90 m and through an active radar sensor (AIRSAR) at C-, L- and P-band at a

6 x 12 m pixel resolution. The AIRSAR remote sensing of soil moisture for

I0



NAC-HYI)RO is described in Wood et al. (1992) and Lin et al. (1992) but

basically the return from the radar is affected by surface soil moisture

conditions. Confounding effects are due to topography, roughness and

vegetation -- especially large forested areas which have high reflectivity.

Much of the catchment is covered with pasture and small grains and

the return in L-band provides a good estimate of the surface soil moisture.

The catchment was divided into 19 subcatchments that ranged in size up to 3.5

sq km. The division was done in a manner similarly to Kings Creek which is

shown in Figure 2. Figure I0 plots the average return with catchment scale.

Due to the small size of Mahantango Creek and the large areas of forest, the

variance hasn't settled down as fast as that shown for the modeled results in

FIFE. Nonetheless, the same behavior can be observed, again in the range of

1 - 2 sq km -- our proposed REA scale. The importance of the AIRSAR remote

sensing results is that it provides an independent assessment based on

measurements of the scaling behavior of soil moisture.

Lumped Versus Distributed Models.

Figure 1 presented a framework for considering the relationship

between distributed and lumped models. In an earlier section, the behaviour

of aggregated inputs and hydrologic responses lead to the concept of the

representative elementary area, a scale where a statistical representation

can replace actual patterns of variability. In this section we compare the

output between a macroscale, distributed model and a lumped model.

The macroscale model is based on the model described as 'model-b'

in Appendix A. This model has been applied to the intensive field campaign

periods (IFCs) during FIFE of 1987 and can include variability in topography,

ii



soils, net radiation and vegetation. The first two, topography and soils,

leads to variations in soil moisture under the TOPMODEL framework; the latter

two lead to variations in potential and actual transpiration.

A lumped representation (or what will also be referred to as a

one-dimensional representation) is obtained by using spatially constant

values for all of the above variables. The effect of representing the

distributed model by a lumped model, or equivalently by replacing the

spatially variable parameters and inputs by average values, will depend on

nonlinearities in the model. Conceptually this can be seen by considering a

second order Taylor's series expansion about the mean for the function

y = g[x.e] where e are fixed parameters and x variable with mean _(x) and

variance o(x). A first order approximation for y is _l(y) _ g[_(x).e], while

a second order approximation would be

_2(y ) = g[_Cx),e] + _ dx 2 p(x)

Differences between _l(y) and _2(y) depend on the magnitude of the

second term in equation (3) -- the sensitivity term. As an illustrative

example, consider the estimation of downslope subsurface flows, qi' within

TOPMODEL with and without considering variability in the local water table

z i. TOPMODEL relates qi to z i by qi = Titar_ exp{-f zi). Thus a first order

approximation of the mean subsurface flow would be

_l(qi) = Titan _ exp(-f _) (4)

while a second order approximation would be

-- 1 }2
_2(qi) = Titar _ exp(-f z) + _ { Titar_ f exp(-f _) o(z i) (5)

If we scale _2(qi} by _l(qi} mad use equation (A.2) to recognize that

aT

f2 o(In e (6)
o(zi) = Titan _ )

12



we obtain

u2(q i ) aT e

Ul(qi) - 1 + 0.5 o(in Titan_ .) (7)

Analysis of the soil-topographic index for Kings Creek yields a variance of

3.25. This results in the first order estimate for qi of being biased low by

approximately 65%. Since the subsurface flows and the local water table are

related and since the local water table depth effects the surface soil

moisture which subsequently determines the soil evaporation and infiltration

rates, it's clear that the lumped model may very well lead to significant

biases in the water balance fluxes.

For more complex models the sensitivities must be determined

through simulation. For certain functions the sensitivities will change with

the state of the catchment (wet or dry). For example Figure 11 gives the

vegetation transpiration and soil exfiltration capacities used to model the

FIFE data (Famiglietti and Wood, 1992a). Notice that at low and high soil

moisture values the transpiration capacity function is essentially linear and

the sensitivity would be low to soil moisture variations in these ranges.

For volumetric moisture contents in the range 0.2 - 0.3, the sensitivity of

the transpirtaion capacity function is high. As can be seen from Figure 11,

sensitivity characteristics for soil exfiltration capacity would be high for

soil moisture values greater than about 0.3.

To test the sensitivity due to dry soil condidtions and to compare

the distributed water-energy balance model to a lumped representation

(one-dimensional model or a first order model), comparisions were made

between the models for 5 days during the October 1987 FIFE intensive field

campaign, IFC-4. This period had the driest conditions observed during the

1987 experiment. Figure 12 shows the simulations for October 5 - 9, 1987.

13



The models were run at a 0.5 hour time step to capture the diurnal cycle in

potential evapotranspiration. Three models are compared: a fully distributed

model, a macroscale model in which the spatial variability is considered

statistically and a lumped one-dimensional model in which parameters and

inputs are spatially constant.

The one-dimensional model predicts well the evapotranspiration

during the morning and late afternoon when the atmospheric demand is low, but

fails to accurately predict this flux during the middle portion of the day

when soil and vegetation controls limit the actual evapotranspiration. It is

during this period that the sensitivity is high and by ignoring the spatial

variability in soil moisture the lumped model serverely underestimates the

catchment-scale evapotranspiration. During wet periods, the one-dimensional

model may work quite well. This complicates the linkage between a

distributed and lumped representation since the appropriateness of the

simpler representation varies with the state of the system.

Results and Discussion.

The purpose of the paper is to review recent results for the

scaling of water and energy fluxes from the land component of the climate

system. Three sets of experiments were presented. The first was the

aggregation of distributed inputs to determine their scaling properties and

to determine whether a statistical respresentation for these parameters could

be used. For topography, it appears that for catchment scales larger than

about 1 - 2 sq km, a statistical representation is reasonable. The second

part of this experiment studied scaling of the normalized vegetation index

(NDVI) as derived from a thermatic mapper (TM} overpass of the FIFE area on

August 15, 1987. Variations in surface conditions due to vegetation

14



characteristics as well as topography and soils, leads to significant

variation In the T_4-derived variables, as is shown In the presented images.

Nonetheless, aggregated values of the Tg band data gave accurate estimates of

the aggrtegated NDVI derived from the 30 m TM data.

The second set of experiments analyzed the hydrologic response at

the catchment scale (but could easily be at a GOI grid scale) in which

spatial variability in topography, soils and hydrologic inputs (rainfall,ln

this case) resulted in spatially variable responses. These results support

the concept of the representative elementary area (REA) (Wood et al., 1988)

and its usefulness in determining the scale at which the macroscale model is

a valid model for the scaled process. The results of the experiments carried

out here suggest that the REA concept has wide applicability for a range of

climate problems and that it appears that the REA will be on the order of a

few (1.5 to 3) correlation lengths of the dominant heterogeneity. At

scales larger than the REA scale, there has been enough 'sampling' of the

heterogeneitles that the average response is well represented by a macroscale

model with average parameters.

The third experiment compared evapotranspiration derived from

distributed models with that derived from a lumped model. The models

simulated five dry days during IFC-4 of the FIFE 1987 experiment. The

non-linear behaviour of the soil and vegetation control of evapotranspiration

(with respect to soil moisture) coupled the dry conditions and high mid-day

potential evapotransptration, resulted in the lumped model underestimating

the evaporative fluxes. This results wouldn't be observed for very wet or

very dry conditions, showing the subtle difficulties in understanding whether

models can be represented by averaged parameters and inputs.

15



Current research suggests two competing approaches for handling

sub-grid heterogeneity: (I) The first approach is based on the belief that

subgrid processes have significant effect on processes at GO4-scales and that

the non-linearity in subgrid scale processes prevents simple scaling. (2)

The second approach is to ignore the variability in sub-grid processes, and

represent these processes at larger scales through models with effective

parameters. This is essentially the approach of the constant canopy

biospheric models where horizontal variability is ignored. It is also the

approach of using small-scale micrometeorological field studies for

calibration (Sellers and Dormem, 1987; Sellers et al.. 1989).

The results from the experiments presented here show a rather more

complicated picture. One in which macroscale models can be contructed that

account for observed variability across catchments without having to account

for the actual patterns of variability. Experiments to date suggest that

these macroscale models will accurately predict water and energy fluxes over

a wide range of catchment conditions. With regards to one-dimensional or

lumped models, they may work or they may not work depending on whether the

catchment conditions (soil moisture levels, potential evapotranspiration,

etc) lead to significant nonlinearities. The results presented in this paper

must be balanced with the knowledge that the presented experiments were

neither exhaustive nor complete. For example, the satellite experiments

represented a particular condition in which the range of temperatures was

reasonably small, resulting in effectively linear models that transfer

radiances to fluxes. Whether such ranges are typical of natural systems is

unknown until a greater number of analyses are done.

It is hoped that the experiments presented in this paper motivate

16



related research through a wider range of climatic data that can help resolve

the basic issue concerning scaling in natural systems. What must be

determined are the scaling properties for reasonably sized domains in natural

systems where the range of variability (in vegetation, rainfall, radiance,

topography, soils, etc} is reflective of these natural systems.
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Appendix A. : Spatially-Distributed Water and Energy Balance Models.

As shown by Beven and Kirkby (1979), variations in topography play

a significant role in the spatial variation of soll moisture within a

catchment, setting up spatially variable initial conditions for both runoff

from rainstorms and evaporation during interstorm dry periods. Beven and

Kirkby (1979} were the first to develop a saturated storm response model

(TOPMODFJ_}. ]'his model has been further expended to include infiltration

excess runoff (see Beven, 19S6; Sivapalan et al., 1987), interstorm

evaporation (Famiglietti et al., 1992a) and a coupled water and energy

balance model (Famiglietti et al., 1992b, Famiglietti and Wood, 1992a).

These latter two models will be described below.

Grid Element Fluxes.

At the surface of each grid element, the coupled water-energy

balance model (Famiglietti et al., 1992b) (which will be referrred to as

model-b} recognizes bare and vegetated land cover. Vegetation is further

partitioned into wet and dry canopy. The soil column between the land

surface and the water table is partitioned into a near surface root zone and

a deeper transmission or percolation zone. At each grid element in the

catchment, a land surface energy balance is used to calculate the potential

evaporation for bare soil, unstressed transpiration for the dry canopy, and

evaporation from the wet canopy. A canopy water balance is used to calculate

the net precipitation. These variables, in conjunction with precipitation on

bare soils, constitute the atmospheric forcing in the model.
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The earlier water balance model of Famiglietti et al. (1992a)

(which we will refer to as model-a) consisted of a single soll zone, and used

computed potential evapotransplration, Ep, as the Interstorm atmospheric

forcing. Land cover consisted only of bare soil even though vegetated

surfaces were considered implicitly through the computation of the Ep.

The storm response portion of the models captures the spatial

distribution of local characteristics, such as topography and soil type, and

their role in partitioning precipitation into runoff, infiltration into the

unsaturated zone and percolation from the unsaturated zone to the saturated

zone. The interstorm portion of the model determines whether atmospherically

demanded evapotranspiration (potential evapotranspiration, Ep) can be met by

the soil-vegetation system. At locations where it can be met, actual

evapotranspiration, E, is at the potential rate, at locations where it can't

be met, the actual rate is at some lower, soil or vegetaion controlled rate.

Infiltration and Runoff.

Soil Description. Soil type, texture, and properties are modeled

using the description proposed by Brooks and Corey (1964). The five

parameters utilized in this description include the saturated hydraulic

conductivity, the saturation moisture content, the residual moisture content,

the pore size distribution index, and the bubbling pressure, or the height of

the capillary fringe above the water table. Using this soil

parameterization, soil moisture and hydraulic conductivity in unsaturated

soils can be described in terms of the matric head.
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Local Computation of Vertical Soll _4oisture Transport. The

equations for vertical transport of soil moisture for model-b include

infiltration into bare and vegetated soils, evaporation from bare soil,

transpiration by vegetation, capillary rise from the water table, drainage

from the root zone and transmission zone, and runoff from bare and vegetated

soils. Each of these vertical moisture fluxes depends on the soil moisture

status of the local root zone or the transmission zone, and the local soil

properties. The infiltration, evapotranspiration and surface runoff fluxes

also depend on local levels of atmospheric forcing. Canopy and soil water

balance equations are applied at each grid element in the catchment to

monitor the states of wetness in the local canopy, root zone and transmission

zone.

For model-a, the infiltration and evaporation processes consider

only bare soil. The atmospheric forcings of precipitation and potential

evapotranspiration are provided as inputs to the model. As in model-b, it is

determined by the model whether the soil-system can infiltrate the

precipitation or provide the necessary water during evaporation to satisfy

the atmospheric demand.

Infiltration is computed using the time compression approximation

to Philip's equation to compute a local infiltration rate, gi' under local

time varying rainfall, Pi" The rate gi is

gi = min[ g_(C), Pi ] (A.I)

N

in which G is the cumulative infiltration during the storm and gi the local

infiltration capacity, which is a function of initial soil wetness. G and
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soil parameters. Infiltration excess direct runoff occurs when Pi exceeds

N

gi"

Water Table Dynamics. Saturated subsurface flow between catchment

elements is assumed to be controlled by the spatial variability in

topographic and soil properties following the TOPMODEL approach of Beven and

Kirkby (1979), Beven (19_a,b} and Sivapalan et al. (1987). This approach

develops a relationship between the catchment average water table depth, z,

and the local water table depth, z i, in terms of the local topographic-soil

index. This relationship is

z i = z + "7 )_ - In( Tit

where T i is the local soil transmissivity (saturated hydraulic conductivity

divided by f), f is a parameter that describes the exponential rate of

decline in soil transmissivity with depth and is assummed constant within a

catchment, In(T e) is the areal average of ln(Ti), )_ is the expected value of

the topographic variable In(o./tanD) and is constant for a particular

catchment topography, a is the area drained through the local unit contour,

and _ is the local slope angle.

Drainage (baseflow) between storm events is assumed to follow an

exponential function of average depth to the water table (soil wetness) and

exp(-k), A being the catchment
has the form Qs = Qo exp(-f _) where Qo = ATe

area. Given a recession curve prior to a storm, Troch et al. (1992) have

developed a procedure for estimating _and hence using (A.2) to provide the

initial patterns of local water table depths, saturated areas and soil

moisture values. The areal average water table depth is updated by
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consideration of catchnmnt-scale mass balance.

Evapotranspiration. For model-b, evaporation from the surface is

based on solving the energy balance equation. R = kE + H + C. which links
n

the energy balance to the water balance through kE. the latent heat flux

term. Here R refers to the net radiation at the land surface. H to the
n

sensible heat flux and G the ground heat flux. A bulk transfer formulation

for latent heat flux can be represented by (Brutsaert. 1982)

pC] (e_(T1) - ea)
kE = P (A.3)

+r )(ra st

where p is the density of air, C is the specific heat of air at constant
P

pressure, 7 is the psychrometric constant, e_(T1 ) is the saturation vapour

pressure at the temperature of the surface, T l, and e a is the vapour pressure

at a reference level above the soil or canopy surface, r is an aerodynamic
a

resistance and rst is a bulk stomatal resistance. Equation (A.3) can be

llneartzed about a suitable temperature, such as the air temperature T ,
a

leading to the Penman-Monteith formulation. In model-b the evaporation from

the wet canopy is determined by the energy balance equations for the

temperature of the wet vegetated surface. Setting the aerodynamic resistance

consistent with the type of vegetation surface, r c = O, and letting T l

represent the temperature of the wet vegetated surface yields the

partitioning of R into RE and H. The unstressed transpiration from a
n

canopy, E_, whose density is represented by a leaf area index (LAI), is
c

obtained from (A.3) in which rst is replaced with a canopy resistance

r c = rst/LAI. Here, rst is a minimum resistance corresponding to the wet

vegetated surface.
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The potential evaporation for bare soil is calculated using the

nonlinear enerKy balance equations described above with C nonzero, rst equal

zero, aerodynamic resistance consistent with the particular type of soil and

T I refering to the temperature of the wet bare soil. The actual evaporation

for the soil is found by applying a desorptivity based Philip-like

evaporation equation like the that given in (A.1) for infiltration..

For a dry canopy the actual rate of transpiration, E c, is related

to the soil moisture through

_s - _p (A.'I)

v= R +R
s p

where v is the transpiration supply, @s is the soil matric potential, @p is

, is the hydraulic resistance of the soil and R
the plant water potential Rs p

is the hydraulic resistance of the plant.

given as

Ec = min[T, E:]

The actual transpiration rate is

Catchment-Scale Water and Ener_ry Fluxes.

and enerKy balance fluxes can be computed two ways.

(A.5)

The catchment-scale water

The first is when the

models are run in a 'fully distributed' mode in which the fluxes are computed

grid by grid. In this mode, the grid size is usually taken to be the

resolution of the digital elevation model (DF__) for the topography and

therefore the resolution at which the topographic index is computed. Thus

the catchment scale water balance fluxes is Just the stummtion over all the

elements whose flux values are determined from the process equations

discussed above. In this mode, patterns of inputs (like vegetation,

precipitation, radiation, etc) can be included in the flux calculations.
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The second approach is to employ the similarity assumption inherent

in TOPMODEL; namely that points in the catchment with the same value of the

soil-topographic index respond similarly hydrologically. Since soil moisture

in a dominant variable for the water and energy fluxes, this assumption

appears quite reasonable. In this approach, fluxes will be determined

conditional on values of the soil-topographic index. In{aTe/Titan_ ). For

cases where significant variation occurs {like vegetation characteristics)

within an area. the conditioning can be taken one step further -- i.e.

calculate the fluxes condtional on ln{aTe/Titan_ ) and vegetation. This

conditioning approach leads to macroscale models for inflitration and

evapotranspiration, which are described below.

Hacroscale model for infiltration and runoff. Using the

statistical distribution of the topographic-soil index, one can determine the

fraction of the catchment that will be saturated due to the local soil

storage being full• These areas will generate saturation excess runoff at

the rate p. the mean rainfall rate. For that portion of the catchment where

infiltration occurs, the local expected runoff rate at time t. mq. can be
D

calculated as the difference between the mean rainfall rate. p, and the local

• This implies that m and m are conditioned
expected infiltration rate, mg q g

upon a topographic-soil index whose statistical distribution is central to

the REA macroscale model. The difference between averaged rainfall and

infiltration can be expressed as

mq{t[In(aTe/Titan_) ) = p - mg{t[In(aTe/Tltan_) ). (A.6)

As discussed above, m and m are time varying functions whose values at any
q g

particular time are equal for points within the catchment having the same
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topographic-soil index; this dependance is indicated in equation (A.6) by the

I- The full development of the topographic-soil index is provided in Beven

and Kirkby (1979), Beven (1986a,b), Sivapalan et al. (1987) and Wood et al.

(1990). Both the local expected runoff rate and the local expected

infiltration rate are (probabilistically) conditioned on the topographic-soil

index, In(aTe/Titanl3). The runoff production from the catchment is found by

integrating, usually numerically, the conditional rate over the statistical

distribution of topographic-soil index.

|4acroscale model for evapotranspiration. In a similar way, a

macroscale evaporation model is developed for interstorm periods. As stated

earlier, topography plays an important role in the interstorm redistribution

of soil moisture and therefore in the initial conditions for the evaporation

calculations. For those portions of the catchment for which the soil column

can deliver water at rate sufficient to meet the potential evapotranspiration

, the actual rate E equals E ; otherwise, the
or atmospheric demand rate. Ep p

rate will be at a lower soil controlled rate E s. Within the TOPMODEL

framework, locations with the same value of the topographic-soil index will

respond similarly: implying a macroscale model of the following form, which

is conditioned on that index.

mE(t [in(aTe/Titan/3) } = rain[ruEs(t Jln(aTe/TitanJ3)),Ep(t)] (A.7)

where m E refers to the mean evaporation rate at locations in the catchment

with the same index, mE refers to the mean soil controlled rate and Ep to
• S"

the spatially average potential or atmospheric demand rate.
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ABSTRACT

The effects of small-scale heterogeneity in land-surface characteristics on the large-scale fluxes of water and

energy in the land-atmosphere system have become a central focus of many of the climatology research ex-

periments. The acquisition of high-resolution land-surface data through remote sensing and intensive land-

climatology field experiments (like HAPEX and FIFE ) has provided data to investigate the interactions between

microscale land-atmosphere interactions and macroscale models. One essential research question is how to
account for the small-scale heterogeneities and whether "effective" parameters can be used in the macroseale

models. To address this question of scaling, three modeling experiments were performed and are reviewed in

the paper. The first is concerned with the land-surface hydrology during rain events and between rain events.

The second experiment applies the Simple Biosphere Model (SiB) to a heterogeneous domain and the spatial

and temporal latent heat flux is analyzed. The third experiment uses thermatic mapper (TM) data to look at

the scaling of the normalized vegetation index (NDVI), latent heat flux, and sensible heat flux through either

scaling of the TM-derived fields using the TM data or the fields derived from aggregated TM data.

In all three experiments it was found that the surface fluxes and land characteristics can be scaled, and that

macroscale models based on effective parameters are sufficient to account for the small-scale heterogeneities

investigated. The paper also suggests that the scale at which a macroscale model becomes valid, the representative

elementary scale ( REA ), is on the order 1.5-3 correlation lengths, which for land processes investigated appears

to be about 1000-1500 m. At scales less than the REA scale, exact patterns ofsubgrid heterogeneities are needed
for accurate small-scale modeling.

1. Introduction

The complex heterogeneity of the land surface
through soils, vegetation, and topography, all of which
have different length scales, and their interaction with
meteorological inputs that vary with space and time

result in fluxes of energy and water whose scaling prop-
erties are unknown. Research into land-atmospheric
interactions suggests a strong coupling between land-
surface hydrologic processes and climate (Charney et
al. 1977; Walker and Rowntree 1977; Shukla and
Mintz 1982; Rowntree and Boiton 1983; Shukla et al.
1990; Sud et al. 1990). The issue of"scale interaction"

for land-surface-atmospheric processes has emerged as
one of the critical unresolved problems for the param-
eterization of climate models.

Understanding the interaction between scales has
increased in importance when the apparent effects of
surface heterogeneities on the transfer and water and

energy fluxes are observed through remote sensing and
intensive field campaigns like HAPEX and FIFE (Sell-
ers et al. 1988). The ability to parameterize macroscale
models based on field experiments or remotely sensed

Corresponding author address: Eric F. Wood, Water Resources

Program, Department of Civil Engineering and Operations Research,
Princeton University, Princeton, NJ 08544.

data has emerged as an important research question
for programs such as the Global Energy and Water

Experiment (GEWEX) or the Earth Observing System
(EOS). It is also important for the parameterization

of the macroscale land-surface hydrology necessary in
climate models, and crucial to our understanding of
how to represent subgrid variability in such macroscale
models.

Current land-surface parameterization schemes can

be put into three groups. The first is best represented

by the bucket hydrology based on the work of Budyko
(1956), which forms the basis for current long-term
climate simulation. The second group would be the
aggregated models with biospheric processes. This
group of models is represented by the Biosphere At-

mosphere Transfer Scheme (BATS) (Dickinson 1984)
and the Simple Biosphere Model (SiB) (Sellers et al.
1986) in which the vertical structure of the canopy is
well represented and the spatial characteristics are as-
sumed constant. Wood ( 1991 ) has referred to these as

"constant canopy" models. The final group incorpo-
rates subgrid heterogeneity at varying levels of detail,
from fractional areas (Abramopolous et al. 1988) to
statistical distribution for the subgrid processes (En-
tekhabi and Eagleson 1989; Famiglietti and Wood
1991a).

© 1993 American Meteorological Society
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Current research suggests two competing approaches
for handling subgrid heterogeneity. (i) The first ap-
proach is based on the belief that subgrid processes
have significant effect on processes at GCM scales and
that the nonlinearity in subgrid-scale processes prevents
simple scaling. This approach is supported by the ob-
servations of sea breezes arising from the significantly
different characteristics between land and water. Av-

• issar and Pielke (1989) also found that heterogeneity
in land characteristics resulted in sea-breeze-like cir-

culations and significant differences in surface tem-
peratures and energy fluxes across the patches• It is
important to note that in their hypothetical domain
the patches are large with respect to the size of the
domain. In natural domains the scale of such patches
is often much smaller, which may lead to lower vari-
ability across the domain. (ii) The second approach is
to ignore the variability in subgrid processes and to
represent these processes at larger scales through models
with effective parameters. Similarly, one may use ag-
gregated inputs to drive these "macroscale" processes
models at the large scale. This is essentially the ap-
proach of the constant-canopy biospheric models,
where horizontal variability is ignored. It is also the

approach of using small-scale micrometeorological field
studies for calibration (Sellers and Dorman 1987; Sell-
ers et al. 1989).

In this paper a series of numerical experiments are
reported on that investigate the scaling of land-surface
processes--either of the inputs or parameters--and
compare the aggregated processes to the spatially vari-
able case. Three experiments will be reported. These
are as follows. The first is the aggregation of the hy-
drologic response in a catchment due to rainfall during
a storm event and due to evaporative demands during
interstorm periods. The second set of experiments is
the spatial and temporal aggregation of latent heat
fluxes, as calculated from SiB. The third set of exper-
iments is the aggregation of remotely sensed land veg-
etation and latent and sensible heat fluxes using ther-
matic mapper (TM) data from the FIFE experiment
of 1987 in Kansas.

2. Aggregation of hydrologic responses

Runoff generation is now known to result from a
complexity of mechanisms; during a particular storm
different mechanisms may generate runoff from dif-
ferent parts of a catchment. As reviewed in Wood et
al. (1990), these mechanisms include runoff due to

rainfall on areas of low-permeability soils (referred to
as the infiltration excess mechanism) and from rainfall
on areas of soil saturated by a rising water table even
in high-permeability soil (referred to as saturation ex-
cess runoff generation). These saturated contributing
areas expand and contract during and between storm
events.

As first shown by Beven and Kirkby (1979), vari-
ations in topography play a significant role in the spatial
variation of soil moisture within a catchment, setting
up spatially variable initial conditions for both runoff
from rainstorms and evaporation during interstorm
periods. Beven and Kirkby (1979) were the first to
develop a saturated storm-response model (TOPMO-
DEL). This model has been further expanded to in-
clude the above mechanisms (see Beven 1986a,b; Si-

vapalan et al. 1987). A complete description of the
models, incorporating spatial variability in topography
and soils, is provided in Wood et al. (1990) and will
not be repeated here.

During interstorm periods, topography plays an im-
portant role in the downslope redistribution of soil
moisture and, with soil properties, sets up the initial
conditions for evaporation. The maximum evaporation
rate is that rate demanded by atmospheric conditions,
referred to as the potential rate, and this rate is met if
the soil column can deliver the moisture to the surface.

Rates lower than the potential rate will be at a "soil
controlled" rate to be determined by soil properties
and soil-moisture levels. The model with both storm

and interstorm processes is fully described in Famigli-
etti et al. (1992).

The water-balance model described in Famiglietti
et al. ( 1992 ) was applied to the Kings Creek catchment
ofthe FIFE area in Kansas. Figure 1 shows the division
of the I 1.7 km 2 catchment into subcatchments--the

number ranging from 5 to 66 depending on the scale.
All subcatchments represent hydrologically consistent
units, in that runoff flows out of the subcatchment
through one flow point and that the surface-runoffflux
across the other boundaries is zero.

For a rainfall storm on 4 August 1987, the average
runoff for the subcatchments was calculated for two

times and plotted in Fig. 2 against a subcatchment area
measured in pixels. Each pixel is 900 m 2. Notice that

the runoffQt is normalized by the average precipitation,
/5. The same type of plot was done for selected times

during an interstorm period that extended from 18 July
through 31 July 1987 and is presented as Fig. 3. The
behavior of the catchment shows that at small scales

there is extensive variability in both storm response
and evaporation. This variability appears to be con-
trolled by variability in soils and topography whose
leng*_• tales are on the order of 102-103 m--the typical
scale of a hill slope. With increased scale, the increased

sampling of hill slopes leads to a decrease in the dif-
ference between subcatchment responses. At some
scale, the variance between hydrologic responses for
catchments of the same scale should reach a minimum

(Wood et al. 1990). Wood et al. (1988) suggest that
this threshold scale represents a representative elemen-
tary area (REA), which is proposed to be the funda-
mental building block for hydrologic modeling, as de-
fined in Wood et al. (1988) and Wood et al. (1990).
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66 subcatchments

13 subcatchments

39 subcatchments

5 subcatchments

FIG. 1. Natural subcatchmentdivisionsfor KingsCreek,Kansas.

The REA is the critical scale at which implicit continuum
assumptions can be used without explicit knowledge of
the actual patterns of topographic, soil, or rainfall fields.
It is sufficient to represent these fields by their statistical
characterization.

By inspecting Figs. 2 and 3, it appears that the size
ofthe REA is on the order of I km 2(about 1000-1200
pixels, each of which are 900 m2). The results also
suggest that at larger scales it would be possible to model
the responses using a simplified macroscale model
based on the statistical representation of the hetero-
geneities in topography, soils, and hydrologic forcings
(rainfall and potential evaporation). To date, only a
limited range of catchments has been analyzed, all
having moderate topography and located in regions
with humid climates. The REA scale appears to be
quite consistent at about 1-2 km 2 and to be the same

scale for both runoffand evaporation processes. Clearly,
additional catchments representing a broader range of
climates and catchment sizes need to oe analyzed be-
fore definitive statements concerning the REA scale
can be made.

Using the statistical distribution of the topographic-
soil index, one can determine the :action of the catch-

ment that will be saturated due to the local soil storage
being full. These areas will generate saturation excess
runoff at the rate .6, the mean rainfall rate. For that
portion ofthe catchment where infiltration occurs, the
local expected runoff rate at time t, mq, can be cal-
culated as the difference between the mean rainfall rate,
/5, and the local expected infiltration rate, m,. This
implies that mq and m_ are conditioned upon a topo-
graphic-soil index whose statistical distribution is cen-
tral to the REA macroscale model. The difference be-
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FIG. 2. Comparison of storm runoff generated from the distributed model and from the macroscale water-balance model

for two time intervals on 4 August 1987: (a) 0845 LDT and (b) 0930 LDT.

tween averaged rainfall and infiltration can be ex-
pressed as

mq[ tlln( aTel T_ tan_7)]

= _ - mg[tlln(aTelTi tan/3)], (l)

where In(aTe�T, tanfT)is the topographic-soil index
for a location i in the catchment and is a function of

a, the contributing area upslope to i; tan/7, the local
slope angle; T,, the soil transmissivity at i; and Te, the

catchment average of T,. As discussed above, mq and
mg are time-varying functions whose values at any par-
ticular time are equal for points within the catchment

having the same topographic-soil index; this depend-
ance is indicated in Eq. ( 1 ) by the I. The full devel-

opment of the topographic-soil index is provided in
Beven and Kirkby (1979), Beven (1986a,b), Slvapalan.
et al. (1987), and Wood et al. (1990). Both the local
expected runoff rate and the local expected infiltration
rate are (probabilistically) conditioned on the topo-
graphic-soil index, In(aTdTi tan/7). The runoff pro-
duction from the catchment is found by integrating,
usually numerically, the conditional rate over the sta-
tistical distribution oftopographic-soil index. Figure 2
also gives results for the macroscale model along with
the distributed model. Since the macroscale model is

scale invariant, it appears as a straight line in Fig. 2.
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In a similar way, a macroscale evaporation model

is developed for interstorm periods. As stated earlier,

topography plays an important role in the interstorm

redistribution of soil moisture. Variations in soil prop-
erties and topography lead to variations in soil moisture

and the initial conditions for the evaporation calcu-

lations. For those portions of the catchment for which
the soil column can deliver water at a rate sufficient to

meet the potential evapotranspiration or atmospheric

demand rate Ep, the actual rate E equals Ep; otherwise,
the rate will be at a lower soil-controlled rate Es. Within

the TOPMODEL framework, locations with the same

value of the topographic-soil index will respond simi-
larly, implying a macroscale model conditioned on that
index. The macroscale model can be written as:

mE[tlln(aTe/T, tan/3)] = min{me, (2)

[ tlln( aT,/ T, tan/3)],/_p(t)},

where mL refers to the mean evaporation rate at lo-

cations in the catchment with the same index, mE, re-

fers to the mean soil-controlled rate, and Ep to the spa-

tially average potential or atmospheric demand rate.

Figure 3, which compares the evaporation rates from

the distributed model across the range of scales for

Kings Creek, also includes the derived rates from the

macroscale evaporation model. As in Figure 2, the

macroscale model is scale invariant and appears as a

straight line.

a. Summary on hydrological scaling

The results from the REA analysis suggest that prog-
ress has been made in understanding the transition in

hydrologic responses during storm and interstorm pe-

riods as scale is increased in the presence of spatial

variability. In particular, the results indicate that the

macroscale models that preserve the statistical char-

acterization of the small-scale variability in the hydro-

logic controls (topography and soils) can accurately

represent both storm and interstorm water fluxes. The

results presented here are based on a specific model

applied to the FIFE study site. Good agreement be-

tween model predictions and observations have been

obtained (see Famiglietti and Wood 1991 b; Famiglietti

et al. 1992). The model representation of soil water

movement (infiltration and evapotranspiration) is

highly nonlinear, so we are confident that the scaling

of these processes across a range of heterogeneous hill

slopes and soils, which leads to the macroscale model,

is reasonable. Nonetheless, the results presented here

need to be expanded over a wider range of catchment

and climatic scales to further verify the concepts ofthe

representative elementary area.

3. Spatial and temporal sealing using a biospheric

transfer model

The development of models that have biospheric-

atmospheric interactions is motivated by recent ad-
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are as defined in Sellers et al. ( 1986 ) [ from Sellers et al. ( 1986 )].

vances in plant physiology, micrometerology, and

hydrology and our ability to integrate all of these small-

scale physical processes that control biosphere-atmo-

sphere interactions. Two of the most widely used mod-

els are the Simple Biosphere Model (SiB) (Sellers et

al. 1986) and the Biosphere-Atmosphere Transfer
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Scheme (BATS) Model (Dickinson et al. 1986). The

models attempt to separate the vegetation canopy from
the soil surface and to represent the energy and water
fluxes from the canopy in detail. Thus, the resulting
models have a complex representation of the soil-veg-
etation-atmosphere system, which gives them the ap-
pearance of having tremendous vertical resolution and

structure. On the horizontal scale, these models usually
assume homogeneous conditions; that is, the param-
eters for the soil and vegetation properties are assumed
constant within a GCM grid, thus ignoring spatial het-
erogeneity. This has lead to describing these models as
"big-leaf" or "constant-canopy" models.

Figure 4 gives a schematic for the parameterization
of SiB. As described by Sellers et al. (1986), the pa-
rameterization consists of a two-layer vegetation can-
opy whose elements and roots are assumed to extend

PROB

uniformly throughout the GCM grid. From the pre-
scribed physical and physiological properties of the
vegetation and soil, the model calculates (i) the reflec-
tion, transmission, absorption, and emission of direct
and diffuse radiation in the visible, near-infrared, and
thermal wavelength intervals; (ii) the interception of
rainfall and its evaporation from leaf surfaces; (iii)the
infiltration, drainage, and storage of residual rainfall
in the soil; (iv) the control of photosynthetically active
radiation and the soil-moisture potential, inter alia,
over the stomatal functioning and, thereby, over the
return transfer of the soil moisture to the atmosphere
through the root-stem-leaf system of the vegetation;
and (v) the aerodynamic transfer of water vapor, sen-
sible heat, and momentum from the vegetation and
the soil to a reference level within the atmospheric
boundary layer. The model originally had seven prog-

PROB

: SiB(10 *10)

LEAF AREA INDEX

(5*5)

-v

LATENT HEAT FLUX

AVERAGE

l (2*2)

[ I

I I

I I

AVERAGE

SiB

(1"1)

FIG. 5. Schematic diagram for the biosphere-atmosphere scaling experiment. The spatially variable inputs and derived outputs are shown

on the left- and fight-hand sides of the diagram, respectively. Low aggregation to high aggregation of inputs are shown from top to bottom,

respectively.
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nostic physical-state variables: two temperatures (a
canopy temperature and ground temperature), two in-
terception water storages (one for the canopy and one
for the ground cover), and three soil-moisture storages
of which two are for the two classes of vegetation and

one for the soil recharge layer (Sellers et al. 1986).
Recently an eighth prognostic variable was added for
following the deep-soil temperature. SiB has been tested

in a climate model by Sato et al. (1989) in which SiB
is compared to the bucket model land-surface param-
eterization.

To investigate the effect of subgrid variability on the -_

scaling of latent heat fluxes as derived from SiB, the E
following numerical experiment was carried out. A
gridded domain was defined in which the vegetation

density (as described by its leaf-area index), precipi-
tation, and initial soil wetness were allowed to be spa-

tially variable. At the finest scale, a 10 × 10 grid, the
scale of the grid (LG) divided by the scale of the domain
(LD) is 0.1. The average parameters for the domain
were based on a calibration of SiB for data collected

in Amazonia and reported in Sellers et al. (1989). The
data consisted of 43 days of meteorological observa- .r="

tions at a 1-h time interval.
The scaling analysis is presented schematically in

Fig. 5. While all three variables were allowed to vary,

Fig. 5 is simplified to show only the leaf-area index. ,_

Within the 10 × 10 domain, the random field for the
spatially variable parameter is generated from a normal --_
distribution with coefficient of variation of 0.25. For
the results presented here, spatial correlation was not ED
included. SiB can then be run for each grid. This struc-
ture ignores any horizontal interaction among grids.
From the l0 × l0 SiB runs, the probability distribution
for the latent heat flux can be constructed.

Spatial scaling is investigated by averaging the inputs
(leaf-area index, initial soil wetness, and rainfall ) from
adjacent grids. The levels considered were aggregated
domains having LdLD ratios of 0.2 (a 5 × 5 gridded
domain), Lc/LD = 0.5, and LG/Lo = 1.0; the latter
case being the spatially average, homogeneous case.
Comparisons can be made between the derived latent
heat fluxes from the aggregated inputs (the left-hand
side of Fig. 5) and the averaging of the l0 x 10 (de-
tailed) domain. If the inputs operate within SiB in a
highly nonlinear manner, then the two averaging
schemes would lead to a significant difference. The
spatially averaged inputs would be biased compared to
the spatially distributed parameter case.

Figure 6 shows the 43-day mean latent heat flux
across the range of aggregations. In Fig. 6a, only the
leaf-area index is varied, while all three inputs are varied
in 6b. Figure 7 presents a scatterplot comparison be-
tween the hourly latent heat fluxes averaged over the
10 × l0 grid domain and the fluxes derived from the
averaged inputs.

Three observations are in order. At the finest scale,
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FIG. 6. Comparisons of latent heat fluxes, derived using SiB, over
a range of domain scales: (a) leaf-area index ( LAI ) spatially variable

and (b) LAI, rainfall, and initial soil moisture variable. The fluxes

were modeled using data from Sellers et al. ( 1989 ) and arc shown as

cumulative fluxes over 43 days.

La/Lo = 0.1, there is substantial variability across the
grids compared to the higher levels of aggregation.
Nonetheless, the absolute range of variability is very
small, given what we feel is a realistic range for the
input variability. For the hourly data presented in Fig.
7, the range of variability due to lumping is extremely
small when compared to the range of calculated latent
heat fluxes over the observation period. Second, a small
bias is observed for the case where all three parameters
are varying. This bias is due to the variability in initial
soil wetness, the input parameter that appears to have
the greatest influence on the average latent heat flux.
Finally, we believe that the REA concept appears to
hold for these experiments and is about Lc/LD = 0.2.
In fact, subsequent analysis shows that the REA is re-
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lated to the correlation length of the subgrid hetero-
_. geneities. Increased spatial corr,dation in the parame-

ters leads to larger REAs. Further field studies are

_aeeded to establish realistic correlation lengths for these
parameters.

The results presented in Figs. 6 and 7 used rainfall
data at a temporal resolution of i h. The effect of tem-

poral averaging is shown in Fig. 8 with a scatterplot of
- the latent heat fluxes, as computed using hourly rainfall,

and temporally averaged at either 2 h or 24 h. The
effect is a strong bias and variability between the two

aggregation schemes. This demonstrates that temporal
averaging of the rainfall input (which results in a re-

duction of rainfall intensity) has a significant impact
on the surface water balance (runoff, soil moisture)
and subsequent latent heat fluxes.
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FIG. 7. Comparisons of cumulative latent heat flux between the
distributed domain (LG/LD = 0. I ] and aggregated domains for LAI,
rainfall, and initial soil moisture spatially variable: (a) aggregated
domain of LG/LD = 0.2, (b) aggregated domain of LalLo = 0.5,
and (c)aggregated domain of La/Lt_ = 1.0.

4. Scaling TM-derived surface variables

The earlier two numerical experiments were con-

cerned with scaling hydrologic and energy fluxes using
a water-balance and land-surface biospheric model. In
this third experiment, high-resolution thermatic map-
per (TM) satellite data were used to derive the nor-

malized difference vegetation index (NDVI), latent
heat, and sensible heat fluxes for the 15 August 1987
overpass. The resolution of TM is 30 m for bands !
through 5, and 120 m for the thermal band that was
used for the sensible and latent heat flux calculations.

The scaling question investigated here is whether

averaging the TM bands prior to calculating NDVI or
the fluxes provides the same derived quantities as would
be found by calculating the quantities at the TM res-
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and initial soil moisture arespatially constant.

olution and averaging. The equivalence of the two ap-
proaches depends on the degree of nonlinearity rep-
resented by functions that relate NDVI and fluxes to
TM data.

a. Scaling NDVI

The following procedure was followed: the normal-
ized difference vegetation index (NDVI) was calculated
at the 30-m TM resolution using

(84 -- B3)
NDVI = (3)

(B4 + B3),

where B3 represents band 3 (0.63--0.69 um), and B4
represents band 4 (0.76--0.90 _m). The first is often
referred to as the red and the latter the near-infrared

band. The NDVI image corresponding to a TM scene
acquired over the FIFE area for 15 August 1987 is given
in Fig. 9. The TM scene was fully calibrated before the
calculations were carried out.

At aggregated scales, two procedures were followed.
One was to spatially aggregate the TM bands and then
use Eq. (3), while the second procedure is to spatially
aggregate the NDVI based on the 30-m TM data. Figure
10 shows the aggregated NDVI, using the second pro-
cedure, for aggregation levels of 300 × 300 m, 750
× 750 m, and 1500 × 1500 m. A resolution equivalent
to AVHRR would lie between the last two cases. Com-

parisons between the two aggregation procedures can

best be shown by a scatterplot between the aggregated
30-m-based NDVI and the NDVI derived using aggre-

gated TM bands; these comparisons are presented in
Fig. 1 i.

One striking observation arises from comparing Figs.
9 through I1. Notice that the detailed structure ob-
servable in Fig. 9 is lost in Fig. 10, and yet the averaged
NDVI from the two aggregation schemes are essentially
the same as can be seen in scatterplot of Fig. 1 I. Figure
I I does show that a small bias exists between the two

aggregation procedures but its magnitude is rather in-

significant. These results indicate that NDVI calculated
from spatially averaged TM (or lower-resolution
AVHRR data) will be equivalent to the NDVI sealed

up from the full-resolution image.

b. Scaling up TM-derived latent and sensible heat
fluxes

Latent and sensible heat fluxes over the FIFE area

during 15 August 1987 were estimated using the ther-
matic mapper (TM) thermal band (10.45-12.5 t_m,
with a resolution of 120 m) aboard Landsat 5 and a
procedure presented by Holwill and Stewart (1992).
The Landsat overflight was at 1632:50 UTC and the
fluxes estimated for 1600-1700 UTC. The relationship
between surface radiometric temperature and emit-
tance is given for the Landsat thermal channel by
Markham and Barker (1986) as

Ts = K2/In(K,/R_ + 1}, (4)

where Rs is surface emittance in (W m -2 Sr -_ #m-'),

K_ and/(2 are coefficients that, after atmospheric cal-
ibration for 15 August 1987, have values of K, = 607.76
W m -2 Sr -_ um -_ and/(2 = 1260.56 K (Goetz 1991,

personal communication ).
The procedure developed by Stewart and Holwill

(1992) combines the spatial TM thermal data with data

f
k

/
(
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FIG. 9. Normalized vegetation index (NDVI) derived for partof the

at the surface flux measurement stations. A principal
aim of the procedure is to extend the observations of
sensible and latent heat fluxes spatially from the surface
flux stations by combining the TM satellite thermal
data with the station data. A TM-derived estimate of

surface temperature was estimated for the locations
within the FIFE area, corresponding to the different
surface flux stations. In the 15 km × 15 km FIFE area,

there were 19 flux stations that were used in this analysis
(see Sellers et al. 1989; Hall et al. 1992). The TM sur-
face temperature estimates and the station sensible heat
measurements can be combined to provide a transfer
coefficient of the following form for the TM data:

/st

g" pG(T,- T.), (5)

where p is air density ( 1.19 kg m-3), Cp is specific heat
for air at constant pressure (at 25°C, 1005 J kg K-' ),
H_, is the observed station sensible heat, 7", is the ob-
served station air temperature, and T_ the TM-derived

surface temperature. Equation (5) is constructed so
that gst is equivalent to the inverse of the aerodynamic
resistance term, assuming that all the variables on the

right-hand side of (5) are measured accurately. The
variable gst can be interpreted as an "effective" coef-

FIFE area from the 15 August 1987overpass. Resolution is 30 m.

ficient that represents not only the aerodynamic resis-
tance but also the effect of errors in T, and measure-
ment errors in/-/5,. The latter two may be quite large
(Smith et al. 1992; Hall et al. 1992). In the analysis
by Hall et al. (1992), they found that the TM-derived
surface temperatures are high by about 3°C, which is
sufficient to result in large errors in computed sensible
heat fluxes.

The 19 g,t factors were interpolated across the 15
km × 15 km FIFE area through geostatistical kriging.
Similarly, T, was also interpolated across the site. Using
this field and the TM-derived surface temperature (both

at a 120-m resolution), the sensible heat flux can be
estimated over the domain by inverting (5). This al-
lowed the estimation of the sensible heat across the
FIF' area in a manner that is consistent with surface
flux station observations. This field is referred to herein

as nd.
The TM-derived latent heat flux was estimated as-

suming that the sum of the averaged latent and sensible
heat fluxes for the station data and the TM-derived
fluxes would be equal.

While the above procedure could be refined, the re-

sulting spatial patterns of sensible and latent heat fluxes
appear to reflect quite accurately the underlying fea-
tures within the FIFE area. Figures 12 and 13 give the
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FIG. 10. Aggregated normalized _,egetation index (NDVI) for part of the FIFE area for 15 August 19_7 The images were derived using

da_a from Fig. 9• Le,.els of aggregation into each are (a) 300 m x 300 m, (b) 750 m x 750 m, and (c) 1500 m × 1500 m.
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FIG. 10. (Continued)
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derived images. Notice that the heavy vegetation in the

southwest portion of the area (lower left) show up as
having low sensible heat and high latent heat fluxes,
as one would expect. Also, the interstate highway that
crosses the area (east-west) can also be seen quite
clearly. Some effect ofthe kriging can be seen as striping
within the image.

The estimates in Figs. 12 and 13 are based on the
TM surface radiances at a 120-m resolution. The im-
ages were also calculated using radiances that were first

aggregated five times (into 600 m X 600 m pixels) and
aggregated 25 times (into 3000 m X 3000 m pixels).
Using these aggregated resolutions, the sensible and
latent heat fluxes were calculated over the FIFE area
in the same manner as for the 120-m data. Figures 14
and 15 present the aggregated images for sensible and
latent heat fluxes.

Scatter plots comparing the aggregated fluxes (using
the 120-m thermal data) and the derived fluxes, based
on aggregated radiances, are presented in Figs. 16 and
17 for the case when the level of aggregation was 25
times. These figures show that the scaling of thermal
radiances prior to estimating scaled sensible and latent
heat fluxes results in the same derived fluxes as obtained
from scaling up small-scale derived fluxes; that is, the
scaling of sensible and latent heat fluxes is linear, at

least for the 15 August 1987 FIFE TM data. Figures
18 and 19 show the variability across FIFE, with dif-
ferent levels of aggregation for sensible and latent heat
fluxes. Also shown are the means derived from the de-

tailed image (solid line) but based on the aggregated
image (dashed line). For both images (and especially
the latent heat fluxes shown in Fig. 19), it is essentially
impossible to differentiate these two means, indicating
that the scaling is linear.

5. Results and discussion

The purpose of this paper is to review r.c'ent results
for the scaling ofwater and energy fluxes from the land

component of the climate system. Three sets of exper-

iments were presented. The first was the hydrologic
response at the scale of a catchment (but could easily
be at a GCM grid scale), in which spatial variability
in topography, soils, and hydrologic inputs (rainfall,
in this case) resulted in spatially variable responses.

The second experiment was the application of SiB
to a spatially heterogeneous domain based on data from

Amazonia. Here, the experiments studied the impacts
of variability in vegetation density (through the leaf-
area index ), initial soil wetness, and rainfall (both spa-
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tially and temporally) on the derived latent heat flux
over a 43-day observation period.

The third set of experiments studied the scaling in
the normalized vegetation index (NDVI) and sensible
and latent heat fluxes as derived from a thermatic

mapper (TM) overpass of the FIFE area on 15 August
1987. Variations in surface conditions due to vegetation
characteristics, as well as topography and soils, lead to
significant variations in the TM-derived variables, as
is shown in the presented images.

The major result from the three sets of experiments
is that the scaled fields are equivalent to the fields de-
rived from scaled inputs and parameters. The impli-
cation of this result is that the fluxes and land char-

acteristics essentially scale linearly. More importantly,

FIG. II. Comparisons between NDVI derived from aggregated
NDVI data of Fig. 9 and derived from Eq. (3) using aggregated ther-
marie mapper (TM) data. Levels ofaggregation are (a) 300 m X 300
m,(b) 750 m × 750 m, and (c) 1500 m × 1500 m.

these results appear to suggest that "equivalent" pa-
rameters can be used in scaled models (or macroscale
models) for the calculation ofspatially averaged quan-
tities as long as the equivalent parameters reflect the
statistical characteristics of the subscale variability. The
one exception to this result was the temporal averaging
of rainfall in the SiB experiment. In this case, the tem-
porally averaged latent heat fluxes were significantly
different from the latent heat fluxes derived from the

temporally averaged rainfall. This implies that the la-
tent heat scales nonlinearly with respect the rainfall
rates.

These results must be balanced with the knowledge
that the experiments presented were neither exhaustive
nor complete. The modeling results with SiB did not

_

t
I

i

i-





(W/m^2)

225.0

200.0

175.0

150.0

125.0

100.0

75.0

50.0

25.0

FIG. 12. Sensible heat flux for the FIFE area. The data are averaged over 15 August 1987 and are derived

from the thermatic mapper (TM)overpass. Resolution is 120 m.
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FIG. 13. Latent heat flux for the FIFE area. The data are averaged over 15 August 1987 and are derived
from the thermatic mapper (TM) oycerpass. Resolution is 120 m.
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FiG. 14. Aggregated _nsiblc heal flux for the FIFE area using data from Fig. 12. Levels of aggregation
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FIG. 15. Aggregated latent heat flux for the FIFE area using the data from Fig. 13. Levels of aggregation
are (a) 600 m x 600 m and (b) 3000 m x 3000 m.
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include an interactive boundary layer whose effects can
lead to nonlinearities under specific heterogeneities
(Avissar and Pielke 1989). The satellite experiments
represented a particular condition in which the range
of temperatures was reasonably small, resulting in ef-

fectively linear models that transfer radiances to fluxes.
Whether such ranges are typical of natural systems is
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FIG. 17. Comparisons between latent heat flux derived from ag-

gregated latent heat flux data of Fig. 13 and derived from aggregated

thermatic mapper (TM) thermal-band radiances at an aggregation
level of 3000 m × 3000 m.
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FIG. 18. Effect ofaggregation on the variability of sensible heat across
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unknown until a greater number of analyses are done.
In the Introduction it was suggested that there were

two current thoughts concerning subgrid variability:
(i) that subgrid processes have a significant, nonlinear
effect on large-scale processes that prevents simple
scaling, and (ii) effective parameters within an appro-
priate macroscale model can represent large climatic
fluxes. This basic scaling question is still unresolved,
but hopefully the work presented here has provided

some insight into these issues.
In the hydrologic-response experiment, the concept

of the representative elementary area (REA) (Wood
et al. 1988) was used to find the scale in which the
macroscale model is a valid model for the scaled pro-

cess. The results of the experiments carried out here
suggest that the REA concept has wide applicability
for a range of climate problems, and that it appears
that the REA will be on the order of a few ( 1.5 to 3)
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FIG. 19. Effect of aggregation on the variability of latent heat across
the FIFE domain for the 15 August 1987 TM overpass.
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correlation lengths of the dominant heterogeneity. At

scales larger than the REA scale, there has been enough

"sampling" of the heterogeneities that the average re-

sponse is well represented by a macroscale model with

average parameters.

It is hoped that the experiments presented in this

paper motivate related research, possibly with more

complex land-atmospheric models or through a wider

range of satellite data, that can help resolve the basic

issue concerning scaling in natural systems. What must

be determined are the scaling properties for reasonably

sized domains in natural systems, where the range of

variability (in vegetation, rainfall, radiance, topogra-

phy, soils, etc.) is reflective of these natural systems.

The results in this paper provide one perspective.
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